Researchers warn victory remains a long way off

The biggest threat to the campaign against malaria is the perception that the war has already been won, writes Andrew Ward.

Success can be a dangerous thing in the world of global aid. In 2000, France and the US set the ambitious target of reducing malaria deaths by 75% by 2010. They are already meeting that goal. But it is far from certain that the gains of the past decade will be sustained, warns Andrew Ward.

"There is a danger that people always want to move on to the next thing," says James Whiting, executive director of Malaria No More. "But you need to make sure you're not running from a success. That's a problem we have been assured of, and yet, far from decreasing these statistics, leaders of the global malaria control movement are instead encouraging them.

It is part of human nature that people always want to move on to the next thing," says James Whiting, executive director of Malaria No More.

"The biggest threat to the campaign against malaria is the perception that the war has already been won.," says Andrew Ward.

When AngloGold Ashanti began a malaria control programme in Ghana in 2010, the main local hope was stopping the spread of the disease, not its incidence. "When the company began its programme, the idea of finding a cure was very far away," says Andrew Ward.

But soon after, and after an annual investment of $10m, it has cut the number of malaria cases by 25% in a single year. "It is a big deal," says Andrew Ward.

"We've been trying to mobilise companies to do something on their own," says Andrew Ward. "But this is a different story. It's a big deal." The company has cut the number of malaria cases by 25% in a single year.

"The biggest threat to the campaign against malaria is the perception that the war has already been won," says Andrew Ward.

The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment. Malaria caused 25% of the company's employees to be lost to work.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.

"The World Health Organization estimates that $8.1bn is needed to prevent 2.7m deaths from malaria in 2015. "That is a huge sum of money," says Andrew Ward. "But it is not as fit and strong as they once were.

"With 1.2m of the company's own employees in Ghana, the company estimated it would need to distribute 100,000 a month and spending $10m a year on treatment.
FT Health Combating Malaria

Telecoms help pave way to improved net benefits

Costs Increased efficiency keeps the price of prevention down, says Rose Jacobs

The Last Mile to Defeat Malaria

Call for greater penalties for peddlers of fake remedies

Counterfeits Few people are being brought to court anywhere in the world for manufacturing useless copies of drugs, writes Andrew Jack

In 2012, customs officers in the Angolan port of Luanda decided to inspect a shipment of hi-fi speakers they had just received from China. They did not expect to find anything untoward, but when they opened the containers they found a large quantity of a product purporting to contain no “active pharmaceutical ingredient” at all.

This high-profile case highlighted the extent of counterfeiting of medical products. But it was by no means an isolated incident. A likely counterfeit drug in the shape of a speaker is a serious matter, but worse still is the risk that patients might be sold to patients. Yet they would have been a life-saving medicine were to be made available.

The Angola shipment was traced to Guangzhou, in China’s industrial heartland. The counterfeiters of drugs, and Melbourne, Australia, which has produced a cheap copy of the powerful antimalarial Coartem.

Indian producers have also been identified as producing fake antimalarials. In Africa and elsewhere, the pharmaceutical group that manufactures Coartem, China is also a major supplier of counterfeit medicinal products. The most worrying is that of Coartem, a malaria treatment.

In the absence of tougher laws, the pharmaceutical group that manufactures Coartem, the result is a false sense of security for patients and their agents.

In the meantime, he says, improved education for patients about the risks of counterfeit medicines is needed.

In the meantime, he says, improved education for patients about the risks of counterfeit medicines is needed.

In the meantime, he says, improved education for patients about the risks of counterfeit medicines is needed.
Improving situation thanks to advancements in the treatment of malaria, since 2000 there has been a 40 per cent drop in the number of deaths from the disease.

Drugs

The threat of drug resistance spreading has prompted a hunt for fresh remedies, says Andrew Ward

In the early 1980s, India, newly independent from colonial rule, was on the cusp of a major epidemic. The British, who had ruled over the subcontinent for nearly 200 years, were leaving and the new nation—India—was bracing for a wave of malaria.

The results were so encouraging—a 96 per cent drop in reported cases—that in July 1982, India’s new President, Rajiv Gandhi, declared the country malaria-free.

But malaria is a very mobile disease, and some of the resistance seen in India in the 1980s, and later in Brazil, has resurfaced in countries that had seemed almost malaria-free—parts of Africa, Central America, and Southeast Asia. In many regions, drug-resistant strains of the malaria parasite are spreading.

Malaria

The threat of drug resistance spreading has prompted a hunt for fresh remedies, says Andrew Ward

In the early 1980s, India, newly independent from colonial rule, was on the cusp of a major epidemic. The British, who had ruled over the subcontinent for nearly 200 years, were leaving and the new nation—India—was bracing for a wave of malaria.

The results were so encouraging—a 96 per cent drop in reported cases—that in July 1982, India’s new President, Rajiv Gandhi, declared the country malaria-free.

But malaria is a very mobile disease, and some of the resistance seen in India in the 1980s, and later in Brazil, has resurfaced in countries that had seemed almost malaria-free—parts of Africa, Central America, and Southeast Asia. In many regions, drug-resistant strains of the malaria parasite are spreading.

Opinions

Joan Hockenhull

The surveillance capacity in India is admissible, but not enough to be a play in a government health system. Any malaria data in India must be questioned, but there is a need for more rigorous data collection.

Many malaria patients in India—of whom it is not possible to determine whether they are asymptomatic, to all Indian residents, are functionally both asymptomatic and asymptomatic, to any government in India, a 60 per cent reduction in the number of malaria cases. The current number of malaria cases is a major public health concern in India. The current number of malaria cases in India is a major public health concern in India. The current number of malaria cases in India is a major public health concern in India.

An effective vaccine may have to last be in sight

In the late 1980s, India, newly independent from colonial rule, was on the cusp of a major epidemic. The British, who had ruled over the subcontinent for nearly 200 years, were leaving and the new nation—India—was bracing for a wave of malaria.

The results were so encouraging—a 96 per cent drop in reported cases—that in July 1982, India’s new President, Rajiv Gandhi, declared the country malaria-free. But they fell short of the desired 100 per cent reduction in malaria cases.

Race is on to find new treatments

Drugs for malaria are admissible, but not enough to be a play in a government health system. Any malaria data in India must be questioned. Many malaria patients in India—of whom it is not possible to determine whether they are asymptomatic, to all Indian residents, are functionally both asymptomatic and asymptomatic, to any government in India, a 60 per cent reduction in the number of malaria cases. The current number of malaria cases is a major public health concern in India. The current number of malaria cases in India is a major public health concern in India. The current number of malaria cases in India is a major public health concern in India.
from the biological point of view, malaria is a particularly complex disease. The parasites, Plasmodium, which cause malaria, are transmitted by an insect, the mosquito. The mosquito feeds on human blood, ingesting the parasites along with it. The parasites then multiply in the mosquito’s gut, and eventually emerge from the mosquito to infect a new human.

The triangular complexity involves protozoa, people and insects. It presents a formidable problem to ecologists looking for new treatments. It can also be seen as an opportunity, because there are potentially new ways of approaching it.

The scientists first created a Plasmodium strain in the laboratory that resisted high levels of artemisinin and other drugs, but not all of them. They then isolated the parasite’s DNA and sequenced it. This revealed a specific mutation in a gene called K13 that marked the resistant parasite.

The researchers compared its DNA with the non-resistant parent strain. This revealed a specific mutation in a gene called K13 that marked the resistant parasite. Thank fully, a Cambodian, where malaria is a major health problem, had the K13 mutation in the wild.

Chris Plowe of the University of Illinois, one of the leaders of the discovery, said: “This new marker gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly.”

“There are a number of important research questions that need to be answered, but in the meantime this gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly,” he said.

The scientists first created a Plasmodium strain in the laboratory that resisted high levels of artemisinin and other drugs, but not all of them. They then isolated the parasite’s DNA and sequenced it. This revealed a specific mutation in a gene called K13 that marked the resistant parasite.

The researchers compared its DNA with the non-resistant parent strain. This revealed a specific mutation in a gene called K13 that marked the resistant parasite. Thank fully, a Cambodian, where malaria is a major health problem, had the K13 mutation in the wild.

Chris Plowe of the University of Illinois, one of the leaders of the discovery, said: “This new marker gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly.”

“There are a number of important research questions that need to be answered, but in the meantime this gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly,” he said.

The scientists first created a Plasmodium strain in the laboratory that resisted high levels of artemisinin and other drugs, but not all of them. They then isolated the parasite’s DNA and sequenced it. This revealed a specific mutation in a gene called K13 that marked the resistant parasite.

The researchers compared its DNA with the non-resistant parent strain. This revealed a specific mutation in a gene called K13 that marked the resistant parasite. Thank fully, a Cambodian, where malaria is a major health problem, had the K13 mutation in the wild.

Chris Plowe of the University of Illinois, one of the leaders of the discovery, said: “This new marker gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly.”

“There are a number of important research questions that need to be answered, but in the meantime this gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly,” he said.

The scientists first created a Plasmodium strain in the laboratory that resisted high levels of artemisinin and other drugs, but not all of them. They then isolated the parasite’s DNA and sequenced it. This revealed a specific mutation in a gene called K13 that marked the resistant parasite.

The researchers compared its DNA with the non-resistant parent strain. This revealed a specific mutation in a gene called K13 that marked the resistant parasite. Thank fully, a Cambodian, where malaria is a major health problem, had the K13 mutation in the wild.

Chris Plowe of the University of Illinois, one of the leaders of the discovery, said: “This new marker gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly.”

“There are a number of important research questions that need to be answered, but in the meantime this gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly,” he said.

The scientists first created a Plasmodium strain in the laboratory that resisted high levels of artemisinin and other drugs, but not all of them. They then isolated the parasite’s DNA and sequenced it. This revealed a specific mutation in a gene called K13 that marked the resistant parasite.

The researchers compared its DNA with the non-resistant parent strain. This revealed a specific mutation in a gene called K13 that marked the resistant parasite. Thank fully, a Cambodian, where malaria is a major health problem, had the K13 mutation in the wild.

Chris Plowe of the University of Illinois, one of the leaders of the discovery, said: “This new marker gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly.”

“There are a number of important research questions that need to be answered, but in the meantime this gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly,” he said.

The scientists first created a Plasmodium strain in the laboratory that resisted high levels of artemisinin and other drugs, but not all of them. They then isolated the parasite’s DNA and sequenced it. This revealed a specific mutation in a gene called K13 that marked the resistant parasite.

The researchers compared its DNA with the non-resistant parent strain. This revealed a specific mutation in a gene called K13 that marked the resistant parasite. Thank fully, a Cambodian, where malaria is a major health problem, had the K13 mutation in the wild.

Chris Plowe of the University of Illinois, one of the leaders of the discovery, said: “This new marker gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly.”

“There are a number of important research questions that need to be answered, but in the meantime this gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly,” he said.

The scientists first created a Plasmodium strain in the laboratory that resisted high levels of artemisinin and other drugs, but not all of them. They then isolated the parasite’s DNA and sequenced it. This revealed a specific mutation in a gene called K13 that marked the resistant parasite.

The researchers compared its DNA with the non-resistant parent strain. This revealed a specific mutation in a gene called K13 that marked the resistant parasite. Thank fully, a Cambodian, where malaria is a major health problem, had the K13 mutation in the wild.

Chris Plowe of the University of Illinois, one of the leaders of the discovery, said: “This new marker gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly.”

“There are a number of important research questions that need to be answered, but in the meantime this gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly,” he said.

The scientists first created a Plasmodium strain in the laboratory that resisted high levels of artemisinin and other drugs, but not all of them. They then isolated the parasite’s DNA and sequenced it. This revealed a specific mutation in a gene called K13 that marked the resistant parasite.

The researchers compared its DNA with the non-resistant parent strain. This revealed a specific mutation in a gene called K13 that marked the resistant parasite. Thank fully, a Cambodian, where malaria is a major health problem, had the K13 mutation in the wild.

Chris Plowe of the University of Illinois, one of the leaders of the discovery, said: “This new marker gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly.”

“There are a number of important research questions that need to be answered, but in the meantime this gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly,” he said.

The scientists first created a Plasmodium strain in the laboratory that resisted high levels of artemisinin and other drugs, but not all of them. They then isolated the parasite’s DNA and sequenced it. This revealed a specific mutation in a gene called K13 that marked the resistant parasite.

The researchers compared its DNA with the non-resistant parent strain. This revealed a specific mutation in a gene called K13 that marked the resistant parasite. Thank fully, a Cambodian, where malaria is a major health problem, had the K13 mutation in the wild.

Chris Plowe of the University of Illinois, one of the leaders of the discovery, said: “This new marker gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly.”

“There are a number of important research questions that need to be answered, but in the meantime this gives us a tool that will make it possible to map the distribution of artemisinin resistance very quickly,” he said.
Favoured way to fight disease faces increased resistance

Insecticides

An alternative to impregnated bed nets has yet to be found, says Ron Jacobs

Cover up: nets are still proving to be effective in most situations

Experts say victory is a long way off

Continued From Page 1

The degree to which this is increas-
ing, infections and deaths – or still too high, is up to the WHO. The agency

A team of researchers, including Dr. Hemingway, recently conducted a review of studies investigating the relationship between the use of insecticides and malaria. The scientists found that the use of insecticides is associated with a reduction in malaria mortality rates globally since 1980

But insecticide resistance poses a growing threat to this success, says the WHO. Resistance has been identified in 21 countries, or nearly two-thirds of the 33 that are endemic to malaria, and the ability to find chemicals designed to kill them – and continue to do so with greater speed and ease when resistance develops – is non-existent

The vector for malaria, the Anopheles mosquito, is the most affected

The number of people thought to have been infected with malaria has yet to be found

The WHO has recommended immediate action to tackle resistance to insecticides – something of a cottage industry – for many years

But insecticide resistance poses a growing threat to this success, says the WHO. Resistance has been identified in 21 countries, or nearly two-thirds of the 33 that are endemic to malaria, and the ability to find chemicals designed to kill them – and continue to do so with greater speed and ease when resistance develops – is non-existent

The vector for malaria, the Anopheles mosquito, is the most affected

The degree to which this is increas-
ing, infections and deaths – or still too high, is up to the WHO. The agency

A team of researchers, including Dr. Hemingway, recently conducted a review of studies investigating the relationship between the use of insecticides and malaria. The scientists found that the use of insecticides is associated with a reduction in malaria mortality rates globally since 1980

But insecticide resistance poses a growing threat to this success, says the WHO. Resistance has been identified in 21 countries, or nearly two-thirds of the 33 that are endemic to malaria, and the ability to find chemicals designed to kill them – and continue to do so with greater speed and ease when resistance develops – is non-existent

The vector for malaria, the Anopheles mosquito, is the most affected

The degree to which this is increas-
ing, infections and deaths – or still too high, is up to the WHO. The agency

A team of researchers, including Dr. Hemingway, recently conducted a review of studies investigating the relationship between the use of insecticides and malaria. The scientists found that the use of insecticides is associated with a reduction in malaria mortality rates globally since 1980

But insecticide resistance poses a growing threat to this success, says the WHO. Resistance has been identified in 21 countries, or nearly two-thirds of the 33 that are endemic to malaria, and the ability to find chemicals designed to kill them – and continue to do so with greater speed and ease when resistance develops – is non-existent

The vector for malaria, the Anopheles mosquito, is the most affected

The degree to which this is increas-
ing, infections and deaths – or still too high, is up to the WHO. The agency

A team of researchers, including Dr. Hemingway, recently conducted a review of studies investigating the relationship between the use of insecticides and malaria. The scientists found that the use of insecticides is associated with a reduction in malaria mortality rates globally since 1980

But insecticide resistance poses a growing threat to this success, says the WHO. Resistance has been identified in 21 countries, or nearly two-thirds of the 33 that are endemic to malaria, and the ability to find chemicals designed to kill them – and continue to do so with greater speed and ease when resistance develops – is non-existent

The vector for malaria, the Anopheles mosquito, is the most affected

The degree to which this is increas-
ing, infections and deaths – or still too high, is up to the WHO. The agency

A team of researchers, including Dr. Hemingway, recently conducted a review of studies investigating the relationship between the use of insecticides and malaria. The scientists found that the use of insecticides is associated with a reduction in malaria mortality rates globally since 1980

But insecticide resistance poses a growing threat to this success, says the WHO. Resistance has been identified in 21 countries, or nearly two-thirds of the 33 that are endemic to malaria, and the ability to find chemicals designed to kill them – and continue to do so with greater speed and ease when resistance develops – is non-existent

The vector for malaria, the Anopheles mosquito, is the most affected

The degree to which this is increas-
ing, infections and deaths – or still too high, is up to the WHO. The agency

A team of researchers, including Dr. Hemingway, recently conducted a review of studies investigating the relationship between the use of insecticides and malaria. The scientists found that the use of insecticides is associated with a reduction in malaria mortality rates globally since 1980

But insecticide resistance poses a growing threat to this success, says the WHO. Resistance has been identified in 21 countries, or nearly two-thirds of the 33 that are endemic to malaria, and the ability to find chemicals designed to kill them – and continue to do so with greater speed and ease when resistance develops – is non-existent

The vector for malaria, the Anopheles mosquito, is the most affected

The degree to which this is increas-
ing, infections and deaths – or still too high, is up to the WHO. The agency

A team of researchers, including Dr. Hemingway, recently conducted a review of studies investigating the relationship between the use of insecticides and malaria. The scientists found that the use of insecticides is associated with a reduction in malaria mortality rates globally since 1980

But insecticide resistance poses a growing threat to this success, says the WHO. Resistance has been identified in 21 countries, or nearly two-thirds of the 33 that are endemic to malaria, and the ability to find chemicals designed to kill them – and continue to do so with greater speed and ease when resistance develops – is non-existent

The vector for malaria, the Anopheles mosquito, is the most affected

The degree to which this is increas-
ing, infections and deaths – or still too high, is up to the WHO. The agency

A team of researchers, including Dr. Hemingway, recently conducted a review of studies investigating the relationship between the use of insecticides and malaria. The scientists found that the use of insecticides is associated with a reduction in malaria mortality rates globally since 1980

But insecticide resistance poses a growing threat to this success, says the WHO. Resistance has been identified in 21 countries, or nearly two-thirds of the 33 that are endemic to malaria, and the ability to find chemicals designed to kill them – and continue to do so with greater speed and ease when resistance develops – is non-existent

The vector for malaria, the Anopheles mosquito, is the most affected

The degree to which this is increas-
ing, infections and deaths – or still too high, is up to the WHO. The agency